Chemical Constituents from the Flowers of \textit{Homalium tomentosum}

Thita Yodsawad1 and Yaowapa Sukpondma2

1 Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Salaya, Nakhon Pathom
2 Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla

\textit{Email: thita.yod@rmutr.ac.th Tel. 084-7484313}

Abstract

The phytochemical investigation of the flowers of \textit{Homalium tomentosum} led to the isolation of three known compounds: 3-phenylisocoumarin (1), 2-(\(\beta\)-glucopyranosyloxy)-7-{2-[(2-oxo-2-phenyl)ethyl]benzoyl}-5-hydroxybenzyl alcohol (2) and cochinolide-\(\beta\)-glucopyranoside (3). Their structures were determined by analysis of spectroscopic data as well as comparison of NMR data with those previously reported.

\textbf{Keywords:} \textit{Homalium tomentosum}, \textit{Homalium} spices, isocoumarin, phenolic glycoside

1. Introduction

\textit{Homalium tomentosum} is a plant of Flacourtiaceae family. It is medium size plant which normally found in area of Thailand and the root of this plant are used as an astringent (Wiart, C. 2006). Previous chemical investigations of \textit{Homalium} species were found various types of compounds such as xanthenes from \textit{H. paniculiflorum} (Wu, S.Y.; \textit{et al.}, 2015), alkaloids from \textit{H. pornyense} (Pais, M.; \textit{et al.}, 1973), benzofuranones from \textit{H. brachybotry} (Mosaddik, A., Forster, P. I., Waterman, P. G., 2007), phenolic glycosides from \textit{H. longifolium} (Shaari, K. and Waterman, P. G., 1994 and 1995b), \textit{H. cochochinesis} (Ishikawa, T.; \textit{et al.}, 2004) and \textit{H. ceylanicum} (Liu, L., \textit{et al.}, 2013 and Ekabo, O. A., \textit{et al.}, 1993a, b). In addition, cochinolide, tremulacin and cochincheside B which were isolated from \textit{H. cochochinesis} showed weak activity against herpes simplex virus and tremulacin displayed weak anti-HIV activity (Ishikawa, T.; \textit{et al.}, 2004) along with xanthenes derivatives, homapanicones A and B, showed cytotoxicities against various human cancer cell lines (Wu, S.Y.; \textit{et al.}, 2015). From the literature review, the chemical investigation of the flowers of this plant has not been reported and various types of compounds of this genus displayed interesting biological activities. In this work, we describe the isolation and structural elucidation of three known compounds isolated from the flowers of this plant.

2. Materials and Methods

Melting points were determined on an electrothermal melting point apparatus (Electrothermal 9100) and reported without correction. Infrared spectra (IR) were obtained on a Perkin Elmer Spectrum GX FT-IR system and recorded on wave number (cm\(^{-1}\)). \(^1\)H and \(^{13}\)C-Nuclear magnetic resonance spectra (\(^1\)H and \(^{13}\)C NMR) were recorded on a FTNMR, Bruker Avance 300 MHz or 500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Spectra were recorded
as chemical shift parameter (δ) value in ppm down field from TMS (δ 0.00). Ultraviolet spectra (UV) were measured with a UV-160A spectrophotometer (SHIMADSU). Principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution, respectively. Optical rotations were measured in methanol solution with sodium D line (590 nm) on a JASCO P-120 automatic polarimeter. Thin-layer chromatography (TLC) and precoated thin-layer chromatography were performed on silica gel 60 GF₂₅₄ (Merck). Column chromatography was carried on silica gel (Merck) type 100 (70-230 mesh ASTM), Sephadex LH-20 or reverse phase C₁₈ silica gel.

Extraction and isolation: The flowers of <i>H. tomentosum</i> were extracted with acetone and methanol to give the crude acetone (4.88 g) and methanol (11.15 g) extracts. The crude acetone extract was separated by column chromatography over silica gel. Elution was performed with 100% dichloromethane followed by increasing amount of methanol and finally with 100% methanol to afford thirteen fractions (Fr1-13). Fraction 4 was separated by column chromatography over Sephadex LH-20 with 50% methanol in dichloromethane to give compound 1 (17.8 mg). Fraction 10 was purified by column chromatography over Sephadex LH-20 with 50% methanol in dichloromethane to yield three subfractions (Fr101-3). Subfraction 10-2 was separated by column chromatography over Sephadex LH-20 with 50% methanol in dichloromethane to obtain compound 2 (19.0 mg). The crude methanol extract was separated by column chromatography over Sephadex LH-20 with 100% methanol to give four fractions (M1-4). Fraction M3 was separated by column chromatography over Sephadex LH-20 with 100% methanol to yield five subfractions (M31-35). Subfraction M32 was purified by column chromatography over reverse phase silica gel with 70% methanol in water followed by increasing amount of methanol and finally with 100 % methanol to afford compound 3 (3.3 mg).

3-Phenylisocoumarin (1): brown solid; mp = 80-82 °C; IR (film) 1730 cm⁻¹; UV (MeOH) 296, 310 and 340 nm; ¹H NMR (300 MHz in CDCl₃): δ_H 6.97 (s, 1H, H-4), 7.47 (m, 2H, H-5, H-7), 7.48 (m, 3H, H-3′, H-4′), 7.73 (dt, 2.0, 8.0, 1H, H-6), 7.89 (dd, 2.0, 8.4, 2H, H-2′, H-6′) and 8.32 (d, 8.0, 1H, H-8); ¹³C NMR (75 MHz in CDCl₃): δ_C 101.83 (C-4), 120.65 (C-8a), 125.29 (C-3′, C-5′), 125.97 (C-5), 128.18 (C-7), 128.86 (C-4′), 129.72 (C-8), 129.99 (C-2′, C-6′), 132.00 (C-1′), 134.88 (C-6), 138.00 (C-4a), 153.74 (C-3) and 162.00 (C=O).

2-((β-glucopyranosyloxy)-7-(2-(2-oxo-2-phenyl) ethyl)bezoyl)-5-hydroxybenzyl alcohol (2); white solid; mp = 118-120 °C; IR (film) 1653 and 3429 cm⁻¹; UV (MeOH) 231 and 285 nm; [α]_D²⁴ -19.2 (c 0.3, MeOH); ¹H NMR (300 MHz in Acetone-d₆): δ_H 3.44 (m, 4H, H-2′-H-5′), 3.68 (dd, 4.5, 11.1, 1H, H-6a′), 3.85 (dd, 4.5, 11.1, 1H, H-6b′), 4.76 (d, 7.2, 1H, H-1′), 4.83 (s, 2H, H-7′), 5.26 (d, 13.2, 1H, H-7a), 5.30 (d, 13.2, 1H, H-7b), 6.70 (dd, 3.0, 8.7, 1H, H-4), 6.85 (d, 3.0, 1H, H-6), 7.05 (d, 8.7, 1H, H-3), 7.40 (d, 7.8, 1H, H-3′), 7.45 (dt, 1.2, 7.8, 1H, H-5′), 7.53 (m, 1H, H-4′), 7.58 (dd, 1.5, 7.2, 1H, H-4″), 7.63 (m, 2H, H-3′′ and H-5′′), 8.07 (dd, 1.5, 7.2, 2H, H-2′′ and H-6′′), 8.11 (dd, 1.2, 7.8, 1H, H-6′), ¹³C NMR (75 MHz in Acetone-d₆): δ_C 44.55 (C-7′), 61.63 (C-7′), 61.81 (C-6′), 70.44 (C-4′), 76.84 (C-2′), 77.01 (C-3′), 77.84 (C-5′), 102.86 (C-1′), 115.17 (C-6′), 115.53 (C-4′), 117.72 (C-3′), 127.02 (C-1′ and C-5′), 128.05 (C-2′′ and C-6′′), 128.57 (C-4′′), 130.12 (C-1′′), 132.22 (C-4′′′), 130.68 (C-6′′), 132.82 (C-3′′, C-3′′′ and C-5′′′), 137.31 (C-1′′), 137.69 (C-2′′), 148.67 (C-2′), 152.62 (C-5′), 166.61 (C-8′′) and 196.66 (C-7′′).
3. Results and Discussion

Three known compounds were isolated from the flowers of *H. tomentosum*. Their structures were identified by analysis of spectroscopic data and comparison of NMR data with those previously reported.

Compound 1, the 1H NMR spectrum displayed signals of the 1,2-disubstituted benzene (δ_H 7.47 (m, 2H), 7.73 (dt, 2.0, 8.0, 1H) and 8.32 (d, 8.0, 1H)), monosubstituted benzene (δ_H 7.48 (m, 3H) and 7.89 (dd, 2.0, 8.4, 2H)) and trisubstituted double bond (δ_H 6.97 (s, 1H)) units which was confirmed by HMBC and 1H-1H COSY data. The 13C NMR and DEPT 135° spectra displayed one carbonyl (δ_C 162.00), four quaternary (δ_C 120.65, 132.00 138.00, and 153.74) and ten methine (δ_C 101.83, 125.29 x 2, 125.97, 128.18, 128.86, 129.72, 129.99 x 2 and 134.88) carbons. From HMBC data, the olefinic proton of the trisubstituted double bond (H-4, δ_H 6.97) showed a cross peak with C-5 (δ_C 125.97) of the 1,2-disubstituted benzene and the aromatic proton, H-8 (δ_H 8.32), of the 1,2-disubstituted benzene displayed a cross peak with ester carbonyl carbon (C-1, δ_C 162.0) which were confirmed the trisubstituted double bond and ester carbonyl carbon connected at C-4a (δ_C 138.00) and C-8a (δ_C 120.65), respectively and the chemical shift value of C-3 (δ_C 153.74) of the trisubstituted double bond,
established an isochromenone unit. The aromatic proton, H-2′ (δH 7.89) of the monosubstituted benzene showed a cross peak with C-3 of the isochromenone unit which was confirmed the monosubstituted benzene connected at C-3 of the isochromenone unit. Compound 1 was 3-phenylisocoumarin (Shaari, K. and Waterman, P. G., 1995a).

Compound 2, the 1H NMR spectrum showed signals of the monosubstituted benzene (δH 7.58 (dd, 1.5, 7.2, 1H), 7.63 (m, 2H) and 8.07 (dd, 1.5, 7.2, 2H)), 1,2,4-trisubstituted benzene (δH 6.70 (dd, 3.0, 8.7, 1H), 6.85 (dd, 3.0, 1H) and 7.05 (d, 8.7, 1H)), 1,2-disubstituted benzene (δH 7.40 (d, 7.8, 1H), 7.45 (dt, 1.2, 7.8, 1H), 7.53 (m, 1H) and 8.11 (ddd, 1.2, 7.8, 1H)), oxymethylene protons (δH 5.26 (d, 13.2, 1H) and 5.30 (d, 13.2, 1H)), methylene proton (δH 4.83 (s, 2H)) and glucose unit: one anomeric proton (δH 4.76 (d, 7.2, 1H)), two nonequivalent oxymethylene protons (δH 3.68 (dd, 4.5, 11.1, 1H) and 3.85 (dd, 4.5, 11.1, 1H)) and four methine protons (δH 3.44 (m, 4H)) units. The coupling constant value of the anomeric proton (J = 7.2 Hz) indicated that the glucose unit would be a β-glucopyranose. The 13C NMR and DEPT 135° spectra presented two carbonyl (δC 166.61 and 196.66), six quarternary (δC 127.02, 130.12, 137.31, 137.69, 148.67 and 152.62), fifteen methine (δC 70.44, 76.84, 77.01, 77.84, 102.86, 115.17, 115.53, 117.72, 127.02, 128.05, 128.57, 130.68, 132.22, and 132.82 x 2) and three methylene (δC 44.55, 61.63 and 61.81) carbons. The HMBC data, the oxymethylene protons (H-7a and H-7b, δH 5.26 and 5.30) displayed cross peaks with C-2 (δC 148.67) and C-6 (δC 115.17) of the 1,2,4-trisubstituted benzene, suggested that the oxymethylene carbon (C-7, δC 61.63) was connected at C-1 (δC 127.02) of the 1,2,4-trisubstituted benzene. The hydroxyl groups were located at C-2 and C-5 (δC 152.62) according to the chemical shift values to form a 2,5-dihydroxybenzyl alcohol unit. The aromatic proton, H-2′′′ (δH 8.07), of the monosubstituted benzene showed a cross peak with ketone carbonyl carbon (C-7′′′, δC 196.66). This data established a benzoyl moiety. The methylene proton (H-7′′, δH 4.83) gave cross peaks with C-1′′′ (δC 137.31) of the benzoyl moiety and C-1′′ (δC 130.12) of the 1,2-disubstituted benzene, indicated that the methylene carbon (C-7′′, δC 44.55) was attached at C-1′′′ of the benzoyl moiety though a ketone linkage and C-2′′ (δC 137.69) of the 1,2-disubstituted benzene. The aromatic proton, H-6′′ (δH 8.11) of the 1,2-disubstituted benzene showed a cross peak with ester carbonyl carbon (C-8′′, δC 166.61) and the oxymethylene protons (H-7a and H-7b) of the 2,5-dihydroxybenzyl alcohol unit presented a correlation with ester carbonyl carbon (C-8′′), indicated that the 2,5-dihydroxybenzyl alcohol unit was connected at C-1′′ of the 1,2-disubstituted benzene though an ester linkage. In addition, the anomeric proton (H-1′, δH 4.76) of the β-glucopyranose presented a cross peak with C-2 of the 2,5-dihydroxybenzyl alcohol unit though an ether linkage. Compound 2 was a 2-(β-glucopyranosyloxy)-7-[2-(2-oxo-2-phenylethyl)benzoyl]-5-hydroxybenzyl alcohol (Shaari, K. and Waterman, P. G., 1995b).

Compound 3, the 1H NMR data showed signals of the monosubstituted benzene (δH 7.46 (d, 7.5, 2H), 7.34 (t, 7.5, 2H) and 7.27 (t, 7.5, 1H)), trisubstituted double bond (δH 5.98 (d, 4.5, 1H)), two methylene groups (δH 2.67 (dd, 4.8, 8.0, 18.0, 1H), 3.11 (ddd, 4.8, 8.0, 18.0, 1H) and 1.94 (m, 2H)), two oxymethine protons (δH 5.71 (d, 4.2, 1H) and 4.63 (ddd, 4.5, 10.0, 1H)) and one glucose unit: one
anomeric proton $\delta_H 4.49 (d, 7.8, 1H)$, two nonequivalent oxymethylene protons $\delta_H 3.72 (dd, 5.4, 11.0, 1H)$ and 3.84 ($dddd, 2.4, 5.4, 11.0, 1H$) and four methine protons $\delta_H 3.18 (dt, 3.9, 7.8, 1H), 3.34 (m, 1H)$ and 3.40 ($dt, 3.9, 7.8, 2H$) units. The glucose unit would be a β-glucopyranose according to the coupling constant value of anomeric proton ($J = 7.8$ Hz) (Ishikawa, T., et al., 1998). The 13C NMR and DEPT 135° spectra showed one carbonyl ($\delta_C 168.50$), four quarternary ($\delta_C 126.07, 142.39, 148.68$ and 149.91) and eleven methine ($\delta_C 68.17, 70.81, 71.76, 73.15, 73.97, 76.77, 102.59, 111.12, 126.69, 127.42$ and 128.26) and three methylene ($\delta_C 19.67, 28.19$ and 62.08) carbons. From $^1H-^1H$ COSY data, the methylene protons ($H_2-5, \delta_H 1.94$) gave cross peaks with $H_2-4 (\delta_H 2.67$ and 3.11) and $H-6 (\delta_H 4.63$) along with the oxymethine proton ($H-6$) showed cross peaks with H_2-5 and the olefinic proton, $H-7 (\delta_H 5.98)$ of the trisubstituted double bond. These data established a $-\text{CH}_2\text{CH}_2\text{CH(OH)CH}=$ moiety. The HMBC data, the methylene protons, H_2-5 and the oxymethine proton $H-6$ presented cross peaks with C-3a ($\delta_C 148.68$) and C-7a ($\delta_C 149.91$), respectively. This result established a cyclohexene. The methylene proton, H_2-4 showed HMBC correlations with C-2 ($\delta_C 168.50$) and C-3 ($\delta_C 142.39$) as well as the chemical shift value of C-7a, established a dihydrobenzofuranone unit. The oxymethine proton ($H-1, \delta_H 5.71$) gave cross peak with C-3a of the dihydrobenzofuranone unit and C-3′ ($\delta_C 126.69$) of the monosubstituted benzene, suggesting that the oxymethine group was connected at C-3 of the dihydrobenzofuranone unit and C-3′ ($\delta_C 126.07$) of the monosubstituted benzene. In addition, the anomeric proton ($H-1′, \delta_H 4.49$) of the β-glucopyranose presented a cross peak with C-6 ($\delta_C 71.76$) of the dihydrobenzofuranone unit. This data confirmed that the β-glucopyranose was connected at C-6 of the dihydrobenzofuranone unit through ether linkage. Compound 3 was a cochinolide-β-glucopyranoside (Ishikawa, T., et al., 1998).

4. Conclusion

Three known compounds: 3-phenylisocoumarin (1), 2-(β-glucopyranosyloxy)-7-[2-[2-oxo-2-phenyl]ethyl]benzoyl]-5-hydroxybenzyl alcohol (2) and cochinolide-β-glucopyranoside (3) were isolated from the flowers of H. tomentosum. Compound 2 is phenolic glycosides of 2,5-dihydroxybenzyl alcohol which is the most compound found in Homalium spp. and this is the first report on the isolation of compound 2 from this plant.

5. Acknowledgement

The author would like to thank the Faculty of Liberal Arts, The Institute of Research and Development as well as Rajamangala University of Technology Rattanakosin for guidance, assistance and financial support along with the Department of Chemistry, Prince of Songkla University also for the place and the kind support in this research.
6. References

